
Verifying PolicyBased Security for
Web Services

CS 563 / ECE 524 Spring 2021
Zhenyu Mao

SOAP
SOAP Message

● XML Document
● Used to exchange structured

information in web services

Is SOAP still in use?

● Outlook (EWS, EAS)
● Bank System
● Telecommunication
● Government API [NOAA, etc.]

Compare with RESTful (eg. JSON)?

WS-Security and XML Rewriting Attack

Main goal of WS-Security:

● sign, encrypt SOAP messages
● attach security tokens to ascertain the

sender's identity

What is XML Rewriting Attack?

● Adding new elements to the SOAP
header without compromising the
contents of the message.

← Redirection Attack

● Change something out of protect

Ref: XML REWRITING ATTACKS: EXISTING SOLUTIONS AND THEIR LIMITATIONS. arXiv:0812.4181; A Formal Solution to Rewriting Attacks on SOAP Messages

WS-Security and XML Rewriting Attack

Main goal of WS-Security:

● sign, encrypt SOAP messages
● attach security tokens to ascertain the

sender's identity

What is XML Rewriting Attack?

● Adding new elements to the SOAP
header without compromising the
contents of the message.

← Reply Attack

● Change the body (loan money)

Ref: XML REWRITING ATTACKS: EXISTING SOLUTIONS AND THEIR LIMITATIONS. arXiv:0812.4181; A Formal Solution to Rewriting Attacks on SOAP Messages

WS-Security and XML Rewriting Attack

Main goal of WS-Security:

● sign, encrypt SOAP messages
● attach security tokens to ascertain the

sender's identity

What is XML Rewriting Attack?

● Adding new elements to the SOAP
header without compromising the
contents of the message.

← Multiple Security Header attack

● Override the origin header

Ref: XML REWRITING ATTACKS: EXISTING SOLUTIONS AND THEIR LIMITATIONS. arXiv:0812.4181; A Formal Solution to Rewriting Attacks on SOAP Messages

Defense: SOAPAccount

Ref: Towards secure SOAP message exchange in a SOA

We define:

● Number of children of Envelope is 2
● Number of Header is 2.
● Number of Signed Elements is 3

However:

● Vulnerable to Replay Attack itself (i.e.
forgery SOAPAccount header)

Defense: WS-SecurityPolicy

● Domain specific language based on
WS-Policy, expressed in WSDL

● Define things to be protected
● Define token to be used
● Define cryptographic communications

protocols
● Uses low-level mechanisms that build

and check individual security headers.
● Too complicated. Hard to get right

Ref: WS-SecurityPolicy Examples Oasis

Our Goals

We want to define abstract and application level goals and turn it into
WS-SecurityPolicy configuration files.

1. Easy to Write/Update [Less Painful]

Link language is a simple notation, covering some common cases, and could
easily be generated from a simple UI or a systems modelling tool.

2. Security

It is safer to generate policy files from link specifications than write them
directly.

Verify policy files

Architecture of Policy Files

TulaFale

pi-Calculus

ProVerif

Links -> Policies

Policies -> Predicate

Authentication and Adequacy Goals

A process P is robustly safe when, for any run in any context, if end Log(a) occurs,
then either begin Log(a) or begin Leak(u) with [a = u @] previously occurred.

P is functionally adequate for a when, for some run in some context, end Log(a)
occurs.

process GenericSender() =
 !in initChan(env);
 in dbChan(sid); in dbChan(rid);
 new freshid;
 filter mkConformant(env,[sid],[rid],[freshid],outenv)
→ !outenv in
 filter linkAssert(sid,rid,env,a) → a in begin (Log,a);
 out (httpChan, outenv)

process GenericReceiver() =
 !in httpChan(env);
 in dbChan(sid); in dbChan(rid);
 filter isConformant(env,[sid],[rid],outenv) → outenv in
 filter linkAssert(sid,rid,outenv,a) → a in end (Log,a);
 done

Useful Predicates

Security Models: Secrecy

The generic sender inputs a request envelope from the attacker for recipient u

Try to replace the body by a secret name B

P preserves secrecy when, for any run in any context where B does not occur, if
the context obtains B, then begin Leak(u) and begin KnowsSecret(u) previously
occurred.

Security Models: Correlation

When the client accepts a response message from the web service, we want to
guarantee that this message was generated in response to a particular earlier
request.

Discussion

We already have TLS (encryption) or other lower level mechanism to ensure
integrity. Why do we still need this (Security-Policy)?

